• <bdo id="is0ws"><noscript id="is0ws"></noscript></bdo>
  • 全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
    第一PPT > PPT課件 > 數學課件 > 人教版九年級數學上冊 > 《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT

    《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT

    《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT 詳細介紹:

    《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT

    《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT

    第一部分內容:知識回顧

    二次函數y=ax2的圖象及性質

    圖象  拋物線  軸對稱圖形

    性質

    開口方向及大小

    對稱軸

    頂點坐標

    增減性

    ... ... ...

    二次函數y=a(x-h)2+k 的圖象和性質PPT,第二部分內容:學習目標

    1.會畫二次函數 y=ax2+k 及 y=a(x-h)2 的圖象.

    2.掌握二次函數 y=ax2+k 及 y=a(x-h)2 的性質并會應用.

    3.理解 y=ax² 與 y=ax²+k 及 y=a(x-h)2 之間的聯系.

    課堂導入

    前面我們已經學習了二次函數 y=ax2 的圖象和性質,同學們能說出二次函數 y=ax2 的圖象的開口方向、大小、對稱軸、頂點坐標、最值、以及增減性嗎?今天我們先來學習只有二次項和常數項的二次函數 y=ax2+k 的圖象和性質.  

    ... ... ...

    二次函數y=a(x-h)2+k 的圖象和性質PPT,第三部分內容:新知探究

    知識點1

    畫出二次函數 y=2x²,y=2x2+1 ,y=2x2-1 的圖象.

    觀察上述圖象,并考慮它們的開口方向、對稱軸和頂點坐標、頂點高低、函數最值、函數增減性.

    函數 y=ax2+k(a≠0) 的性質:

    幾何性質:

    1.拋物線 y=ax2+k 開口方向由 a 決定:當 a>0 時,開口向上,當 a<0 時,開口向下;

    2.對稱軸是 y 軸;

    3.頂點坐標是 (0,k);

    4.|a| 決定了拋物線的開口大小.

    代數性質:

    1.當 a>0 時,函數有最小值 k,當 a<0 時,函數有最大值 k;

    2.如果 a>0,當 x<0 時,y 隨 x 的增大而減小,當 x>0 時,y 隨 x的增大而增大;    

    如果 a<0,當 x<0 時,y 隨 x 的增大而增大,當 x>0 時,y 隨 x 的增大而減小.

    從形的角度探究

    可以發現,把拋物線 y=2x2 向 ______平移______個單位長度,就得到拋物線 y=2x2+1;把拋物線 y=2x2 向______平移______個單位長度,就得到拋物線 y=2x2-1. 

    這三條拋物線的開口方向,開口大小都相同,

    對稱軸都是 y 軸,

    把拋物線 y=2x2 向上平移 1 個單位長度,就得到拋物線 y=2x2+1;把拋物線 y=2x2向下平移 1 個單位長度,就得到拋物線 y=2x2-1.

    二次函數 y=ax2 與 y=ax2+k (a ≠ 0) 的圖象的關系

    二次函數 y=ax2+k 的圖象可以由 y=ax2 的圖象平移得到:

    當 k > 0 時,向上平移 k 個單位長度得到.

    當 k < 0 時,向下平移 -k 個單位長度得到.

    1.一般地,拋物線 y=ax2+k 與 y=ax2 形狀相同,位置不同;

    2.拋物線 y=ax2+k 可由拋物線 y=ax2 平移 |k| 個單位長度得到(當k>0 時,向上平移;當 k<0 時,向下平移);

    3.拋物線 y=ax2+k 有如下特點:當 a>0 時,開口向上;當 a<0 時,開口向下,對稱軸是 y 軸,頂點為 (0,k).

    ... ... ...

    二次函數y=a(x-h)2+k 的圖象和性質PPT,第四部分內容:隨堂練習

    將二次函數 y=-2x2 的圖象平移后,可得到二次函數 y=-2(x+1)2的圖象,平移的方法是(   )

    A.向上平移1個單位   B.向下平移1個單位 

    C.向左平移1個單位   D.向右平移1個單位

    對于函數 y=-2(x-m)2 的圖象,下列說法不正確的是(        )

    A.開口向下 B.對稱軸是直線 x=m

    C.最大值為0 D.與 y 軸不相交

    ... ... ...

    二次函數y=a(x-h)2+k 的圖象和性質PPT,第五部分內容:課堂小結

    二次函數 y=ax2+k(a≠0) 的圖象和性質

    圖象

    1.開口方向由 a 的符號決定;

    2. k 決定頂點位置;

    3.對稱軸是 y 軸.

    性質

    增減性結合開口方向和對稱軸才能確定.

    與 y=ax2 的關系

    平移規律:

    k 正向上平移;

    k 負向下平移.

    二次函數 y=a(x-h)2 的圖象及性質

    圖象

    1.開口方向由 a 的符號決定;

    2. 頂點坐標為(h,0);

    3.對稱軸是 x=h.

    性質

    增減性結合開口方向和對稱軸才能確定.

    與 y=ax2 的關系

    平移規律:

    h 正向右平移;

    h 負向左平移.

    ... ... ...

    二次函數y=a(x-h)2+k 的圖象和性質PPT,第六部分內容:對接中考

    把拋物線 y=-x2 沿著 x 軸方向平移 3 個單位長度,那么平移后拋物線的解析式是______________.

    已知一個二次函數的圖象開口向上,頂點坐標為(0,-1),那么這個二次函數的解析式可以是_____________.(只需寫一個)

    已知函數 y=-(x-1)2 圖象上兩點 A(2,y1),B(a,y2),其中 a>2,則 y1 與 y2 的大小關系是y1_______y2(填“<”“>”或“=”).

    解:因為函數 y=-(x-1)2,

    所以函數圖象的對稱軸是直線 x=1,開口向下,

    因為函數圖象上兩點A(2,y1),B(a,y2),a>2,

    所以 y1>y2.

    關鍵詞:人教版九年級上冊數學PPT課件免費下載,二次函數y=a(x-h)2+k 的圖象和性質PPT下載,二次函數PPT下載,.PPT格式;

    《二次函數y=a(x-h)2+k 的圖象和性質》二次函數PPT 下載地址:

    本站素材僅供學習研究使用,請勿用于商業用途。未經允許,禁止轉載。

    與本課相關的PPT課件:

    熱門PPT課件
    最新PPT課件
    相關PPT標簽

    亚洲精品nV久久久久久久久_国产真实乱对白精彩久久_视频二区三区国产情侣在线_国产精品视频公开课福利
  • <bdo id="is0ws"><noscript id="is0ws"></noscript></bdo>