• <bdo id="is0ws"><noscript id="is0ws"></noscript></bdo>
  • 全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
    第一PPT > PPT課件 > 數學課件 > 人教高中數學A版必修一 > 《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性)

    《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性)

    《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性) 詳細介紹:

    《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性)《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性)《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性)《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性)《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性)《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性)

    《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性)

    第一部分內容:學 習 目 標

    1.了解周期函數、周期、最小正周期的定義.

    2.會求函數y=Asin(ωx+φ)及y=Acos(ωx+φ)的周期.(重點)

    3.掌握函數y=sin x,y=cos x的奇偶性,會判斷簡單三角函數的奇偶性.(重點、易混點)

    核 心 素 養

    1.通過周期性的研究,培養邏輯推理素養.

    2.借助奇偶性及圖象的關系,提升直觀想象素養.

    ... ... ...

    三角函數的圖象與性質PPT,第二部分內容:自主預習探新知

    新知初探

    1.函數的周期性

    (1)周期函數:對于函數f(x),如果存在一個_________,使得當x取定義域內的每一個值時,都有_________,那么這個函數的周期為_____.

    (2)最小正周期:如果在周期函數f(x)的所有周期中存在一個最小的_________,那么這個最小_________就叫做f(x)的_________.

    2.正弦函數、余弦函數的周期性和奇偶性

    初試身手

    1.函數y=2sin2x+π2是(  )

    A.周期為π的奇函數

    B.周期為π的偶函數

    C.周期為2π的奇函數 

    D.周期為2π的偶函數

    2.函數f(x)=2sin 2x的奇偶性為(  )

    A.奇函數 

    B.偶函數

    C.既奇又偶函數 

    D.非奇非偶函數

    3.函數f(x)=3sinπx2-π4,x∈R的最小正周期為________.

    4.若函數y=f(x)是以2為周期的函數,且f(5)=6,則f(1)=________.

    ... ... ...

    三角函數的圖象與性質PPT,第三部分內容:合作探究提素養

    三角函數的周期問題及簡單應用

    【例1】求下列函數的周期:

    (1)y=sin2x+π4;

    (2)y=|sin x|.

    [思路點撥] (1)法一:尋找非零常數T,使f(x+T)=f(x)恒成立.

    法二:利用y=Asin(ωx+φ)的周期公式計算.

    (2)作函數圖象,觀察出周期.

    [解] (1)法一:(定義法)y=sin2x+π4

    =sin2x+π4+2π=sin2x+π+π4,

    所以周期為π.

    法二:(公式法)y=sin2x+π4中ω=2,T=2πω=2π2=π.

    (2)作圖如下:

    觀察圖象可知周期為π.

    規律方法

    求三角函數周期的方法:

    (1)定義法:即利用周期函數的定義求解.

    (2)公式法:對形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(A,ω,φ是常數,A≠0,ω≠0)的函數,T=2π|ω|.

    (3)圖象法:即通過觀察函數圖象求其周期.

    提醒:y=|Asin(ωx+φ)|(A≠0,ω≠0)的最小正周期T=π|ω|.

    跟蹤訓練

    1.利用周期函數的定義求下列函數的周期.

    (1)y=cos 2x,x∈R;

    (2)y=sin13x-π4,x∈R.

    三角函數奇偶性的判斷

    【例2】判斷下列函數的奇偶性:

    (1)f(x)=sin-12x+π2;

    (2)f(x)=lg(1-sin x)-lg(1+sin x);

    (3)f(x)=1+sin x-cos2x1+sin x.

    規律方法

    1.判斷函數奇偶性應把握好的兩個方面:

    一看函數的定義域是否關于原點對稱;

    二看f(x)與f(-x)的關系.

    2.對于三角函數奇偶性的判斷,有時可根據誘導公式先將函數式化簡后再判斷.

    提醒:研究函數性質應遵循“定義域優先”的原則.

    課堂小結

    1.“f(x+T)=f(x)”是定義域內的恒等式,即對定義域內的每一個值都成立,T是非零常數,周期T是使函數值重復出現的自變量x的增加值,周期函數的圖象每隔一個周期重復一次.

    2.周期函數定義中的“f(x+T)=f(x)”是對定義域中的每一個x值來說的,只有個別的x值滿足f(x+T)=f(x),不能說T是y=f(x)的周期.

    3.在數軸上,定義域關于原點對稱,是函數具有奇偶性的一個必要條件.因此,確定函數的奇偶性,先要考查其定義域是否關于原點對稱.若是,再判斷f(-x)與f(x)的關系;若不是,則該函數既不是奇函數,也不是偶函數.

    ... ... ...

    三角函數的圖象與性質PPT,第四部分內容:當堂達標固雙基

    1.思考辨析

    (1)若sin2π3+π6=sinπ6,則2π3是函數y=sin x的一個周期.(  )

    (2)所有的周期函數都有最小正周期.(  )

    (3)函數y=sin x是奇函數.(  )

    [提示] (1)×.因為對任意x,sin2π3+x與sin x并不一定相等.

    (2)×.不是所有的函數都有最小正周期,如函數f(x)=5是周期函數,就不存在最小正周期.

    (3)×.函數y=sin x的定義域為{x|2kπ≤x≤2kπ+π,k∈Z},不關于原點對稱,故非奇非偶.

    2.如圖所示的是定義在R上的四個函數的圖象,其中不是周期函數的圖象的是(  )

    3.若函數y=f(x)是定義在R上的周期為3的奇函數且f(1)=3,則f(5)=________.

    4.判斷下列函數的奇偶性:

    (1)f(x)=-2cos 3x;

    (2)f(x)=xsin(x+π).

    ... ... ...

    關鍵詞:高中人教A版數學必修一PPT課件免費下載,三角函數的圖象與性質PPT下載,三角函數PPT下載,正余弦函數的周期性與奇偶性PPT下載,.PPT格式;

    《三角函數的圖象與性質》三角函數PPT課件(第二課時正、余弦函數的周期性與奇偶性) 下載地址:

    本站素材僅供學習研究使用,請勿用于商業用途。未經允許,禁止轉載。

    與本課相關的PPT課件:

    熱門PPT課件
    最新PPT課件
    相關PPT標簽

    亚洲精品nV久久久久久久久_国产真实乱对白精彩久久_视频二区三区国产情侣在线_国产精品视频公开课福利
  • <bdo id="is0ws"><noscript id="is0ws"></noscript></bdo>