• <bdo id="is0ws"><noscript id="is0ws"></noscript></bdo>
  • 全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
    第一PPT > PPT課件 > 數學課件 > 人教高中數學A版必修一 > 《單調性、最大值與最小值》三角函數PPT

    《單調性、最大值與最小值》三角函數PPT

    《單調性、最大值與最小值》三角函數PPT 詳細介紹:

    《單調性、最大值與最小值》三角函數PPT《單調性、最大值與最小值》三角函數PPT《單調性、最大值與最小值》三角函數PPT《單調性、最大值與最小值》三角函數PPT《單調性、最大值與最小值》三角函數PPT

    《單調性、最大值與最小值》三角函數PPT

    第一部分內容:課標闡釋

    1.理解正弦函數與余弦函數的單調性,會求函數的單調區間.

    2.能夠利用三角函數單調性比較三角函數值的大小.

    3.能夠結合三角函數的單調性求函數的最值和值域.

    ... ... ...

    單調性最大值與最小值PPT,第二部分內容:自主預習

    一、正弦函數與余弦函數的單調性

    1.觀察正弦曲線,正弦函數在哪些區間上是增函數?在哪些區間上是減函數?如何將這些單調區間進行整合?類似地,余弦函數在哪些區間上是增函數?在哪些區間上是減函數?怎樣整合這些區間?

    提示:正弦函數在每一個閉區間["-"  π/2+2kπ","  π/2+2kπ]

    (k∈Z)上都是增函數;在每一個閉區間[π/2+2kπ","  3π/2+2kπ]

    (k∈Z)上都是減函數;余弦函數在每一個閉區間[-π+2kπ,2kπ](k∈Z)上都是增函數;在每一個閉區間[2kπ,π+2kπ](k∈Z)上都是減函數.

    2.填空

    (1)正弦函數y=sin x在每一個閉區間["-"  π/2+2kπ","  π/2+2kπ](k∈Z)上都單調遞增;在每一個閉區間[π/2+2kπ","  3π/2+2kπ](k∈Z)上都單調遞減;

    (2)余弦函數y=cos x在每一個閉區間[-π+2kπ,2kπ](k∈Z)上都單調遞增;在每一個閉區間[2kπ,π+2kπ](k∈Z)上都單調遞減.

    3.做一做

    (1)函數y=sin 2x-1的單調遞增區間是___________; 

    (2)函數y=3-cos 2x的單調遞增區間是___________. 

    解析:(1)令-π/2+2kπ≤2x≤π/2+2kπ,k∈Z,

    解得-π/4+kπ≤x≤π/4+kπ,k∈Z,故函數的單調遞增區間是["-"  π/4+kπ","  π/4+kπ](k∈Z).

    (2)函數y=3-cos 2x的單調遞增區間即為函數y=cos 2x的單調遞減區間,令2kπ≤2x≤π+2kπ,k∈Z,解得kπ≤x≤π/2+kπ,k∈Z,故函數的遞增區間是 kπ,π/2+kπ (k∈Z).

    答案:(1)["-"  π/4+kπ","  π/4+kπ](k∈Z)

    (2)[kπ","  π/2+kπ](k∈Z)

    二、正弦函數與余弦函數的最值和值域

    1.觀察正弦曲線和余弦曲線,正、余弦函數是否存在最大值和最小值?若存在,其最大值和最小值分別為多少?當自變量x分別取何值時,正弦函數y=sin x取得最大值和最小值?余弦函數呢?

    提示:正、余弦函數存在最大值1和最小值-1;正弦函數當且僅當x=2kπ+π/2(k∈Z)時取最大值1,當且僅當x=2kπ+3π/2(k∈Z)時取最小值-1;余弦函數當且僅當x=2kπ(k∈Z)時取最大值1,當且僅當x=π+2kπ(k∈Z)時取最小值-1.

    2.填空

    (1)正弦函數y=sin x當且僅當x=2kπ+π/2(k∈Z)時取最大值1;當且僅當x=2kπ+3π/2(k∈Z)時取最小值-1;

    (2)余弦函數y=cos x當且僅當x=2kπ(k∈Z)時取最大值1;當且僅當x=2kπ+π(k∈Z)時取最小值-1.

    (3)正弦函數y=sin x、余弦函數y=cos x的值域都是[-1,1].

    3.做一做

    (1)函數y=2-3sin x的最小值是___________; 

    (2)當函數y=cos   取得最大值時,x的值等于___________. 

    解析:(1)因為y=sin x的最大值為1,所以y=2-3sin x的最小值是-1.

    (2)當   =2kπ,k∈Z,即x=4kπ,k∈Z時,函數y=cos   取得最大值.

    答案:(1)-1 (2)4kπ(k∈Z)

    ... ... ...

    單調性最大值與最小值PPT,第三部分內容:探究學習

    求三角函數的單調區間

    例1求下列函數的單調遞減區間:

    (1)y=1/2cos(2x+π/3);

    (2)y=2sin(π/4 "-" x).

    分析:(1)可采用整體換元法并結合正弦函數、余弦函數的單調區間求解;(2)可先將自變量x的系數轉化為正數再求單調區間.

    解:(1)令z=2x+π/3,而函數y=cos z的單調遞減區間是[2kπ,2kπ+π](k∈Z).

    ∴當原函數單調遞減時,可得2kπ≤2x+π/3≤2kπ+π(k∈Z),

    解得kπ-π/6≤x≤kπ+π/3(k∈Z).

    ∴原函數的單調遞減區間是[kπ"-"  π/6 "," kπ+π/3](k∈Z).

    反思感悟 與正弦函數、余弦函數有關的單調區間的求解技巧:

    (1)結合正弦、余弦函數的圖象,熟記它們的單調區間;

    (2)確定函數y=Asin(ωx+φ)(A>0,ω>0)單調區間的方法:采用“換元”法整體代換,將ωx+φ看作一個整體,可令“z=ωx+φ”,即通過求y=Asin z的單調區間求出原函數的單調區間.若ω<0,則可利用誘導公式將x的系數轉變為正數.

    ... ... ...

    單調性最大值與最小值PPT,第四部分內容:思維辨析

    求三角函數最值時忽視分類討論或忽略定義域致誤

    1.忽視分類討論

    典例1已知函數y=2asin(2x"-"  π/3)+b的定義域為 0,π/2 ,函數的最大值為1,最小值為-5,求a和b的值.

    錯解∵0≤x≤π/2,∴-π/3≤2x-π/3≤2π/3.

    ∴-√3/2≤sin(2x"-"  π/3)≤1.

    則{■(2a+b=1"," @"-" √3 a+b="-" 5"," )┤解得{■(a=12"-" 6√3 "," @b="-" 23+12√3 "." )┤

    錯解錯在什么地方?你能發現嗎?怎樣避免這類錯誤呢?

    提示:錯解中默認為a>0,忽視了對a<0這一情況的討論,導致丟解.

    正解:∵0≤x≤π/2,∴-π/3≤2x-π/3≤2π/3.

    ∴-√3/2≤sin(2x"-"  π/3)≤1.

    若a>0,則{■(2a+b=1"," @"-" √3 a+b="-" 5"," )┤解得{■(a=12"-" 6√3 "," @b="-" 23+12√3 "." )┤

    若a<0,則{■(2a+b="-" 5"," @"-" √3 a+b=1"," )┤解得{■(a="-" 12+6√3 "," @b=19"-" 12√3 "." )┤

    防范措施 形如y=Asin(ωx+φ)+B或y=Acos(ωx+φ)+B的函數,其最值與參數A的正負有關,因此在解決這類問題時,要注意對A分A>0和A<0兩種情況進行分類討論.

    ... ... ...

    單調性最大值與最小值PPT,第五部分內容:隨堂演練

    1.函數y=-cos x在區間["-"  π/2 ","  π/2]上是(  )

    A.增函數 B.減函數

    C.先減后增函數 D.先增后減函數

    解析:結合函數在["-"  π/2 ","  π/2]上的圖象可知C正確.

    答案:C

    2.函數y=2-sin x的最大值及取最大值時x的值為(  ) 

    A.ymax=3,x=π/2

    B.ymax=1,x=π/2+2kπ(k∈Z)

    C.ymax=3,x=-π/2+2kπ(k∈Z)

    D.ymax=3,x=π/2+2kπ(k∈Z)

    解析:因為y=2-sin x,所以當sin x=-1時,ymax=3,此時x=-π/2+2kπ(k∈Z).

    答案:C 

    ... ... ...

    關鍵詞:高中人教A版數學必修一PPT課件免費下載,單調性最大值與最小值PPT下載,三角函數PPT下載,.PPT格式;

    《單調性、最大值與最小值》三角函數PPT 下載地址:

    本站素材僅供學習研究使用,請勿用于商業用途。未經允許,禁止轉載。

    與本課相關的PPT課件:

    熱門PPT課件
    最新PPT課件
    相關PPT標簽

    亚洲精品nV久久久久久久久_国产真实乱对白精彩久久_视频二区三区国产情侣在线_国产精品视频公开课福利
  • <bdo id="is0ws"><noscript id="is0ws"></noscript></bdo>