• <bdo id="is0ws"><noscript id="is0ws"></noscript></bdo>
  • 全站首頁|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
    第一PPT > PPT課件 > 數學課件 > 人教高中數學A版必修一 > 《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式)

    《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式)

    《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式) 詳細介紹:

    《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式)《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式)《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式)《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式)《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式)《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式)

    《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式)

    第一部分內容:學 習 目 標

    1.能利用兩角和與差的正弦、余弦公式推導出兩角和與差的正切公式.

    2.能利用兩角和與差的正切公式進行化簡、求值、證明.(重點)

    3.熟悉兩角和與差的正切公式的常見變形,并能靈活應用.(難點)

    核 心 素 養

    1.通過利用公式進行化簡、證明等問題,培養邏輯推理素養.

    2.借助公式進行求值,提升數學運算素養.

    ... ... ...

    三角恒等變換PPT,第二部分內容:自主預習探新知

    新知初探

    兩角和與差的正切公式

    名稱       簡記符號     公式                   使用條件

    兩角和的正切T(α+β) tan(α+β)=___________α,β,α+β≠kπ+π2(k∈Z) 且tan α•tan β≠1

    兩角差的正切T(α-β) tan(α-β)=___________α,β,α-β≠kπ+π2(k∈Z)且tan α•tan β≠-1

    初試身手

    1.已知tan α+tan β=2,tan(α+β)=4,則tan αtan β等于(  )

    A.2   B.1    

    C.12   D.4

    2.求值:tan11π12=________.

    3.已知tan α=2,則tanα+π4=________.

    4.tan 75°-tan 15°1+tan 75°tan 15°=________.

    ... ... ...

    三角恒等變換PPT,第三部分內容:合作探究提素養

    兩角和與差的正切公式的正用

    【例1】(1)已知α,β均為銳角,tan α=12,tan β=13,則α+β=________.

    (2)如圖,在△ABC中,AD⊥BC,D為垂足,AD在△ABC的外部,且BD∶CD∶AD=2∶3∶6,則tan∠BAC=________.

    [思路點撥] (1)先用公式T(α+β)求tan(α+β),再求α+β.

    (2)先求∠CAD,∠BAD的正切值,再依據tan∠BAC=tan(∠CAD-∠BAD)求值.

    規律方法

    1.公式T(α±β)的結構特征和符號規律:

    (1)結構特征:公式T(α±β)的右側為分式形式,其中分子為tan α與tan β的和或差,分母為1與tan αtan β的差或和.

    (2)符號規律:分子同,分母反.

    2.利用公式T(α+β)求角的步驟:

    (1)計算待求角的正切值.

    (2)縮小待求角的范圍,特別注意隱含的信息.

    (3)根據角的范圍及三角函數值確定角.

    兩角和與差的正切公式的逆用

    【例2】(1)1+tan 15°1-tan 15°=________.

    (2)1-3tan 75°3+tan 75°=________.

    [思路點撥] 注意特殊角的正切值和公式T(α±β)的結構,適當變形后逆用公式求值.

    規律方法

    公式Tα±β的逆用

    一方面要熟記公式的結構,另一方面要注意常值代換.

    如tanπ4=1,tanπ6=33,tanπ3=3等.

    要特別注意tanπ4+α=1+tan α1-tan α,tanπ4-α=1-tan α1+tan α.

    跟蹤訓練

    2.已知α、β均為銳角,且sin 2α=2sin 2β,則(  )

    A.tan(α+β)=3tan(α-β)

    B.tan(α+β)=2tan(α-β)

    C.3tan(α+β)=tan(α-β)

    D.3tan(α+β)=2tan(α-β)

    兩角和與差的正切公式的變形運用

    [探究問題]

    1.兩角和與差的正切公式揭示了tan αtan β與哪些式子的關系?

    提示:揭示了tan αtan β與tan α+tan β,tan αtan β與tan α-tan β之間的關系.

    2.若tan α、tan β是關于x的方程ax2+bx+c=0(a≠0,b2-4ac≥0)的兩個根,則如何用a、b、c表示tan(α+β)?

    提示:tan(α+β)=tan α+tan β1-tan αtan β=-ba1-ca=-ba-c.

    課堂小結

    1.公式T(α±β)與S(α±β)、C(α±β)的一個重要區別,就是前者角α、β、α±β都不能取kπ+π2 (k∈Z),而后兩者α、β∈R,應用時要特別注意這一點.

    2.注意公式的變形應用.

    如:tan α+tan β=tan(α+β)(1-tan αtan β),1-tan αtan β=tan α+tan βtanα+β,tan α-tan β=tan(α-β)(1+tan αtan β),1+tan αtan β=tan α-tan βtanα-β等.

    ... ... ...

    三角恒等變換PPT,第四部分內容:當堂達標固雙基

    1.思考辨析

    (1)存在α,β∈R,使tan(α+β)=tan α+tan β成立.(  )

    (2)對任意α,β∈R,tan(α+β)=tan α+tan β1-tan αtan β都成立.(  )

    (3)tan(α+β)=tan α+tan β1-tan αtan β等價于tan α+tan β=tan(α+β)•(1-tan αtan β).(  )

    [提示] (1)√.當α=0,β=π3時,tan(α+β)=tan0+π3=tan 0+tan π3,但一般情況下不成立.

    (2)×.兩角和的正切公式的適用范圍是α,β,α+β≠kπ+π2(k∈Z).

    (3)√.當α≠kπ+π2(k∈Z),β≠kπ+π2(k∈Z),α+β≠kπ+π2(k∈Z)時,由前一個式子兩邊同乘以1-tan αtan β可得后一個式子.

    2.若tan β=3,tan(α-β)=-2,則tan α=(  )

    A.17   B.-17

    C.1   D.-1

    3.若tanπ3-α=3,則tan α的值為________.

    ... ... ...

    關鍵詞:高中人教A版數學必修一PPT課件免費下載,三角恒等變換PPT下載,三角函數PPT下載,兩角和與差的正弦余弦正切公式PPT下載,.PPT格式;

    《三角恒等變換》三角函數PPT課件(第3課時兩角和與差的正弦、余弦、正切公式) 下載地址:

    本站素材僅供學習研究使用,請勿用于商業用途。未經允許,禁止轉載。

    與本課相關的PPT課件:

    熱門PPT課件
    最新PPT課件
    相關PPT標簽

    亚洲精品nV久久久久久久久_国产真实乱对白精彩久久_视频二区三区国产情侣在线_国产精品视频公开课福利
  • <bdo id="is0ws"><noscript id="is0ws"></noscript></bdo>